
The Code That Never Ran:
Modeling Attacks on Speculative Evaluation

Craig Disselkoen
University of California San Diego

Mozilla Research Internship
cdisselk@cs.ucsd.edu

Radha Jagadeesan
DePaul University

rjagadeesan@cs.depaul.edu

Alan Jeffrey
Mozilla Research

ajeffrey@mozilla.com

James Riely
DePaul University

jriely@cs.depaul.edu

Abstract—This paper studies information flow caused by
speculation mechanisms in hardware and software. The Spectre
attack shows that there are practical information flow attacks
which use an interaction of dynamic security checks, speculative
evaluation and cache timing. Previous formal models of program
execution are designed to capture computer architecture, rather
than micro-architecture, and so do not capture attacks such as
Spectre. In this paper, we propose a model based on pomsets
which is designed to model speculative evaluation. The model is
abstract with respect to specific micro-architectural features, such
as caches and pipelines, yet is powerful enough to express known
attacks such as Spectre and PRIME+ABORT, and verify their
countermeasures. The model also allows for the prediction of
new information flow attacks. We derive two such attacks, which
exploit compiler optimizations, and validate these experimentally
against gcc and clang.

I. INTRODUCTION

This paper is about some of the lies we tell when we talk
about programs.

An example lie (or to be more formal, a “leaky abstraction”)
is the order of reads and writes in a program. We pretend
that these happen in the order specified by the program text,
for example we think of the program (x:= 0;x:= 1; y:= 2) as
having three sequentially ordered write events:

W x 0 W x 1 W y 2

However, due to optimizations in hardware or compilers,
instructions may be reordered, resulting in executions where
the accesses of x and y are independent, and the hardware or
compiler is free to reorder them:

W x 0 W x 1 W y 2

Instruction reordering optimizations are not problematic as
long as they are not visible to user code, that is if programs
are sequentially consistent. Unfortunately, multi-threaded pro-
grams can often observe reorderings. For example running the
above writing thread concurrently with an observing thread
(if (y) { z:=x }) can result in a sequentially inconsistent exe-
cution (where we highlight the matching write for each read):

Writing thread: W x 0 W x 1 W y 2

Observing thread: R y 2 Rx 0 W z 0

This leaky abstraction has resulted in a literature of relaxed
memory models [29, 44, 19, 28, 5, 20, 21], which try to
state precisely the memory guarantees a compiler is expected
to provide, without requiring the use of expensive memory
barriers to ensure sequential consistency.

Relaxed memory is an example of how simple models can
become complex. Instruction reordering was originally in-
tended to be visible only to the microarchitecture or compiler,
not to the architecture or user code. Reordering optimizations
are so important to the performance of modern systems that
hardware and programming language designers have now
accepted the complexity of relaxed memory models as the
price that has to be paid for acceptable performance.

This paper looks at another leaky abstraction: speculative
evaluation. This is similar to reordering, in that it is an
optimization that was intended to be visible only to the
microarchitecture, but the arrival of Spectre [23] shows that not
only is speculation visible, it has serious security implications.

The simplest example of speculative evaluation is branch
prediction. The expected observable behavior of a conditional
such as (if (x) { y:= 1 } else { z:= 1 }) is that just one branch
will execute, for example:

Rx 0 W z 1

To improve instruction throughput, hardware will often eval-
uate branches speculatively, and roll back any failed specula-
tions. For example, hardware might incorrectly speculate that
x is nonzero, speculatively execute a write to y, but then roll
it back and execute a write to z:

Rx 0 W y 1 W z 1

Speculation is intended only to be visible at the microarchi-
tectural level, but as Spectre shows, this abstraction is leaky,
and in a way that allows side-channel attacks to be mounted.

Instruction reordering and speculative evaluation are similar
leaky abstractions. Both were intended originally not to be
visible to user code, but both abstractions have leaked. This
opens some possible areas of investigation:
• Using ideas from relaxed memory for speculation. There

is a significant literature showing how to build models of

mailto:cdisselk@cs.ucsd.edu
mailto:rjagadeesan@cs.depaul.edu
mailto:ajeffrey@mozilla.com
mailto:jriely@cs.depaul.edu

relaxed memory, for use in validating compilers, or prov-
ing correctness of programs. Less formally, they provide
programmers with a way to visualize and communicate
the behavior of their systems. Inspired by these models,
we give a compositional model of program execution
that includes speculation (§III and §IV) and show how
it can be used to model known attacks (§V) on branch
prediction [23] and transactional memory [10, 12].

• Mounting attacks against speculation on relaxed mem-
ory. Spectre shows how a leaky abstraction allows for
the construction of side-channels which bypass dynamic
security checks. Inspired by these attacks, we show
how to mount information flow attacks against compiler
optimizations, both against the model (§VI) and against
existing compilers (§VII). Fortunately, we were only able
to mount the attacks against ahead-of-time compilers
(where optimizations require secrets to be known at
compile-time) and not just-in-time compilers (which can
optimize based on run-time secrets). With the addition
of shared-memory concurrency to JavaScript [14, §24.2],
the attacks described in this paper might become feasible.

Readers who wish to focus on the impact of the model can skip
to §V on first reading, referring to prior sections as needed.

Acknowledgments: We would like to thank the anony-
mous referees, and the paper shepherd Frank Piessens, whose
comments helped greatly improve this paper. Jagadeesan and
Riely are supported by National Science Foundation CCR-
1617175.

II. RELATED WORK

Information flow provides a formal foundation for end-
to-end security. Informally, a program is secure if there is
no observable dependency of low-security outputs on high-
security inputs. The precise formalization of this intuitive idea
has been the topic of extensive research [38], encompassing
a variety of language features such as non-determinism [46],
concurrency [39], reactivity [33], and probability [17]. The
static and dynamic enforcement of these definitions in general
purpose languages [32] has influenced language design and
implementation.

A key parameter in defining information flow is the obser-
vational power of the attacker model. Whereas the classical
input-output behavior is often an adequate foundation, it
has long been known [26, 6] that side-channels that leak
information arise from other observables such as execution
time and power consumption. Recently, the Spectre family of
attacks [23] has shown that branch prediction, in conjunction
with cache-timing side-channels, allows adversaries to bypass
dynamic security checks.

Chien [9] argues that Spectre-like attacks “extend the
functional specification of the architecture to include its de-
tailed performance” and thus “making strong assurances of
application security on a computing system requires detailed
performance information.” This approach has been pursued
in the information flow literature, by enriching language
semantics with observables such as execution time and power

consumption [47, 15]. This approach has also been pursued
to develop model-checking techniques for Spectre-like attacks
[41]. Like our work, [41] recognizes the role played by
adapting techniques from relaxed memory.

In this paper, we adopt the opposite approach, attempting to
understand Spectre-like attacks as abstractly as possible and
thus to reveal the “essence” of Spectre. We develop a novel
model of speculative evaluation and show that it is sufficient
to both capture known attacks and predict new attacks. Our
model is defined at the language level, rather than the hardware
level; thus, we do not model micro-architectural details such
as caches or timing.

Relaxed memory models [40, 29, 7, 48, 19, 21] allow
speculative execution to varying degrees. Relaxed execution
is known to affect the validity of information flow analyses
[30, 43]. In these models, a valid execution is defined with
reference to other possible executions of the program. These
models are not, however, designed for modeling Spectre-style
attacks on speculation. For example all of these models will
consider the straight-line code:

r:=x; s:= SECRET; a[r]:= 1

to be the same as the conditional code:

r:=x; s:= SECRET;
if (r== s) { a[s]:= 1 } else { a[r]:= 1 }

and indeed an optimizing compiler might choose to rewrite
either of these programs to be the other.

An attacker can mount a Spectre-style attack on the condi-
tional code, for example by setting x to be 0, flushing the
cache, executing the program, then using timing effects to
determine if a[1] is in the cache. If it is, then SECRET must
have been 1. This attack is not possible against the straight-
line code, and so any model trying to capture Spectre must
distinguish them.

Most definitions of non-interference will say that in both
programs, there is no observable dependency of the low-
security outputs (a) on the high-security inputs (SECRET)
and so both programs are safe. The only existing models of
non-interference which capture this information flow are ones
such as [47] which model micro-architectural features such as
caching and timing.

In our model, the straight-line and conditional programs are
not equated, since the conditional code has the execution:

Rx 0

R SECRET 1

W a[0] 1

W a[1] 1

which is not matched in the straight-line code. Indeed, from an
information-flow perspective, this refined treatment of depen-
dencies in conditionals identifies a novel distinguishing feature
of our model, namely that the traditional conditional is a self-
composition operator in the sense of [3].

Static analyses such as the Smith-Volpano type system [39]
will reject the conditional program, due to a[s]:= 1, in which a

2

low-security assignment depends on a high-security variable.
We show how to circumvent such analyses in §V-A.

III. MODEL

Our model is based on partially ordered multisets [16, 36]
(“pomsets”), whose labels are given by read and write actions.
These can be visualized as a graph where the edges indicate
dependencies, for example (r:=x; y:= 1; z:= r + 1) has an
execution modeled by the pomset:

Rx 1 W y 1 W z 2

The edge from (Rx 1) to (W z 2) indicates a data dependency.
Since there is no dependency between (W y 1) and (W z 2), the
write actions may take place in either order. Such reorderings
may arise in hardware (for example, caching) or in the
compiler (for example, instruction reordering).

The novel aspect of the model is that events have
preconditions, which give the thread-local view of mem-
ory. These are used in giving the semantics of condi-
tionals and transactions, modeling failed branch predic-
tion and aborted transactions. For example the program
(if (x) { y:= 1; z:= 1 } else { y:= 2; z:= 1 }) has an execution:

Rx 1 W y 1

W y 2

W z 1

The edges from (Rx 1) to (W y 1) and (W y 2) indicate control
dependencies. The presence of a crossed out (W y 2) indicates
an event with an unsatisfiable precondition, modeling an un-
successful speculation. Since the (W z 1) action is performed
on both branches of the conditional, there is no control
dependency from (Rx 1).

We give the semantics of a program as a set of pomsets
with event labels of the form (φ | a), where φ is the event’s
precondition (such as M = v) and a is the event’s action (such
as W x v). For example the semantics of the program (x:=M)
includes the case where M is v, which is written to x, and is
captured by the one-event pomset:

M = v |W x v

We make few requirements of the logic of preconditions, save
that it includes equalities between expressions, is closed under
substitution, and supports a notion of implication.

The semantics is defined compositionally. As an exam-
ple, we show how to construct one of the pomsets in
Jr:= y;x:= r + 1K. First, Jx:= r + 1K contains the pomset:

r = 1 |W x 2

Next, we perform the substitution of r with 1 in every
precondition, to get that Jx:= r+1K[1/r] contains the pomset:

1 = 1 |W x 2

and since (1 = 1) is a tautology, we elide it:

W x 2

This substitution is performed in defining Jr:= y;x:= r + 1K,
which contains the pomset:

R y 1 W x 2

There is an ordering (R y 1) < (W x 2) (represented pictorially
as an arrow) because the precondition (r = 1) depends on r.
If the precondition was independent of r then there would be
no ordering, for example Jr:= y;x:= r + 1 − rK contains the
pomset:

R y 1 W x 1

since the precondition (r + 1− r = 1) is independent of r.
The main novelty of our semantics is the use of

preconditions, which allow us to provide an unusual
model of conditionals. In most models, an execution of
Jif (M) {C } else {D }K would either be given by an execution
from JCK or from JDK, but not both. In our semantics,
a pomset in Jif (M) {C } else {D }K may include both a
pomset from JCK and a pomset from JDK. For example,
Jif (M) {x:= 1 } else {x:= 2 }K contains:

M 6= 0 |W x 1 M = 0 |W x 2

that is we have behavior from both branches of execution.
Moreover, two events representing the same action on both

sides of a conditional can be merged, producing a single
event. The precondition of the merged event is the disjunction
of the preconditions of the original events. For example
Jif (M) {x:= 1; y:= 3 } else {x:= 2; y:= 3 }K contains:

M 6= 0 |W x 1 M = 0 |W x 2

(M 6= 0) ∨ (M = 0) |W y 3

and since (M 6= 0) ∨ (M = 0) is a tautology, this is:

M 6= 0 |W x 1 M = 0 |W x 2 W y 3

Combining this model of conditionals with the previously
discussed model of memory using substitutions gives that
Jif (z) {x:= 1; y:= 3 } else {x:= 2; y:= 3 }K contains:

R z 1 1 6= 0 |W x 1 1 = 0 |W x 2 W y 3

and we visualize unsatisfiable preconditions as crossed out:

R z 1 W x 1 W x 2 W y 3

Note that this semantics captures control dependencies such as
(R z 1) < (W x 1), independencies such as (R z 1) 6< (W y 3),
and failed speculations such as the crossed out (W x 2).

3

In summary, the features we need of the underlying data
model are:
• actions, which may read or write memory locations, and
• preconditions, which are closed under substitution.

In rest of this section we make data models precise and define
pomsets. In the next section we give the semantics of a simple
imperative language as sets of pomsets.

A. Data models

A data model consists of:
• a set of memory locations X , ranged over by x and y,
• a set of registers R, ranged over by r and s,
• a set of values V , ranged over by v and w,
• a set of expressions E , ranged over by M and N ,
• a set of logical formulae Φ, ranged over by φ and ψ, and
• a set of actions A, ranged over by a and b,

such that:
• values include at least the constants 0 and 1,
• expressions include at least registers and values,
• expressions are closed under substitutions of the form
M [N/r],

• formulae include at least true, false, and equalities of the
form (M = N) and (x = N),

• formulae are closed under negation, conjunction, disjunc-
tion,

• formulae are closed under substitutions of the form
φ[x/r] or φ[N/x],

• there is a relation � between formulae, and
• there are partial functions Rd and Wr : A→ (X × V).

We shall say a reads v from x whenever Rd(a) = (x, v), and a
writes v to x whenever Wr(a) = (x, v). We shall say φ implies
ψ whenever φ � ψ, φ is a tautology whenever true � φ, φ
is unsatisfiable whenever φ � false, and φ is independent of
x whenever φ � φ[v/x] � φ for every v. In examples, the
actions are of the form (Rx v), which reads v from x, and
(W x v), which writes v to x.

B. 3-valued pomsets

Recall the definition of a pomset from [16]:

Definition III.1. A pomset (E,≤, λ) with alphabet Σ is a
partial order (E,≤) together with λ : E→ Σ.

Going forward, we fix the alphabet Σ = (Φ×A). We will
write (φ | a) for the pair (φ, a), elide φ when φ is a tautology,
and write a crossed-out (×a) when φ is unsatisfiable. We lift
terminology from logical formulae and actions to events, for
example if λ(e) = (φ | a) then we say e is unsatisfiable
whenever φ is unsatisfiable, e writes v to x whenever a writes
v to x, and so forth. We visualize a pomset as a graph where
the nodes are drawn from E, each node e is labeled with
λ(e), and an edge d → e corresponds to an ordering d ≤ e.
For example:

Rx 1 W y 0 W y 1

is a visualization of the pomset where:

E = {0, 1, 2} 0 ≤ 1 0 ≤ 2 λ(0) = (true,Rx 1)
λ(1) = (false,W y 0) λ(2) = (true,W y 1)

We are building a compositional semantics of shared mem-
ory concurrency, which means we require a notion of when
a read has a matching write. This is a property we require
of closed programs, but not of open programs. For example a
program whose semantics includes:

W x 1 Rx 0 W y 0 W y 1

may be put in parallel with another program which writes 0
to x. If the program is closed with respect to x though, such
an execution cannot exist, so we need each read of x to have
a matching write. This is captured by defining when e reads
x from d [2]. A preliminary definition (which, as we shall see,
needs to be strengthened) is:

• d < e,
• e implies d,
• d writes v to x, and e reads v from x, and
• there is no d < c < e such that c writes to x.

Unfortunately by itself, this is not enough. The problem is
the final clause saying that there does not exist an x-blocking
event c between d and e. Unfortunately, concurrency can turn
events that were not x-blockers into an x-blocker, even if the
new thread does not mention x. We give an example to show
this in Appendix B. This is a problem in that it means the
preliminary model violates scope extrusion [31], in that we
can find programs C and D such that Jvarx; (C ||D)K is not
the same as J(varx;C) ||DK, even if D does not mention x.

There are a number of ways this can be addressed; for
example, in models such as [4] the reads-from relation is taken
as a primitive. In this paper, we propose 3-valued pomsets as
a solution. These are pomsets in which, in addition to positive
statements (d < e) (interpreted as e depends on d), we also
have negative statements (d |< e) (interpreted as e cannot
depend on d).

Definition III.2. A 3-valued pomset (E,≤, |<, λ) is a pomset
(E,≤, λ) together with |< ⊆ (E × E) such that:

• if d ≤ e then e |< d,
• if d ≤ e and d |< e then d = e,
• if c ≥ d |< e or c |< d ≥ e then c |< e.

Structures similar to 3-valued pomsets have come up in
many guises, for example rough sets [34] or ultrametrics over
{0, 1/2, 1}. They correspond to axioms A1–A3 of Lamport’s
system executions [25]. They are the notion of pomset given
by interpreting d ≤ e in a 3-valued logic [42].

In diagrams, we visualize (e |< d) as a dashed arrow
from d to e (note the change of direction). We refer to
edges introduced by (d < e) as strong edges and by
(e |< d) as weak edges. For readability, we often highlight

4

the reads-from edges as well. For example one execution of
(x:= 0;x:= 1) || (x:=x+ 1) is:

W x 0 W x 1 Rx 1 W x 2

We strengthen the definition of reads-from to require not just
that no blocker exists, but that any candidate blocker must
either have d |< c or c |< e. This ensures that any further
concurrency cannot turn a non-blocker into a blocker.

Definition III.3. In a 3-valued pomset, e can read x from d
whenever:
• d < e,
• e implies d,
• d writes v to x, and e reads v from x, and
• if c writes to x then either d |< c or c |< e.

One of the requirements of closed programs is that every
read event reads from a write event.

In the remainder of the paper, we drop the prefix “3-valued”,
referring to 3-valued pomsets simply as pomsets.

IV. SEMANTICS OF PROGRAMS

In Figure 1, we give the semantics of a simple shared-
memory concurrent language as sets of pomsets. Each pomset
P ∈ JCK represents a single execution of C. We do not expect
JCK to be prefixed closed; thus, one may view each P ∈ JCK
as a completed execution. However, the sets of pomsets given
by our semantics are closed with respect to augmentation,
which may create additional order and strengthening precon-
ditions:

Definition IV.1. P ′ is an augmentation of P if E′ = E, e ≤ d
implies e ≤′ d, e |< d implies e |<′ d, and if λ(e) = (ψ | b)
then λ′(e) = (ψ′ | b) where ψ′ implies ψ.

We give the semantics using combinators over sets of
pomsets, defined in Appendix A. Using P to range over sets
of pomsets, these are:
• restriction νx.P , which filters P to include only pomsets

where every event e that reads from x can read from
some d, following Definition III.3, and where no precon-
dition can depend on x,

• guarding φBP , which filters P , keeping pomsets whose
events have preconditions that imply φ,

• substitution P[M/x], which replaces x with M in every
precondition of P ,

• composition P1 ‖ P2, which unions pomsets from P1

and P2, allowing events to be merged, and
• prefixing a→ P , which adds an event with action a to

pomsets in P , ordering a before any e whose predicate
depends on the value read by a.

These operations are similar to those from models of concur-
rency such as [8], but adapted here to the setting of speculative
evaluation.

Restriction and guarding filter the set of pomsets; we have
(νx . P) ⊆ P and (φ B P) ⊆ P . Substitution updates the
preconditions in a pomset, thus we expect the number of

pomsets to be unchanged; in addition, the number of events
in each of the pomsets is unchanged. The most interesting
operators are composition and prefixing, which create larger
pomsets from smaller ones.

Composition is used in giving the semantics for conditionals
and concurrency. P1 ‖ P2 contains the union of pomsets from
P1 and P2, allowing overlap as long as they agree on actions.
For example, if P1 and P2 contain:

φ | a ψ1 | b ψ2 | b χ | c

then P1 ‖ P2 contains:

φ | a ψ1 ∨ ψ2 | b χ | c

Prefixing is used in giving the semantics of reads and writes.
a→ P adds a new event c with action a to each pomset in
P . As in the definition of parallel composition, the definition
allows the new event to overlap with events in P as long as
they agree on the action.

If c writes to a location that is also written by e in P , then
prefixing introduces weak order between them: c |< e. This
ensures that these writes cannot be given the reverse order in
an augmentation.

If c reads from a location that occurs in the predicate of e,
then prefixing introduces order from c to any e whose predicate
depends on x. For example, if a and b write to the same
location, a reads v from x, ψ is independent of x, and P
contains:

ψ | b χ | c

then a→P contains:

φ | a ψ | b χ[~v/~x] | c

In the remainder of this section, we give examples to
explain the semantics, concentrating on reads and conditionals.
Security-relevant examples begin in §V.

A. Sequential memory accesses
In the semantics of memory, there are two very different

ways memory can be accessed: sequentially or concurrently.
These are modeled differently, since hardware and compilers
give very different guarantees about their behavior. In the
semantics of Jr:=x;CK, given in Figure 1, these are found
on left and right sides of the union operation. In this section,
we discuss the sequential semantics, JCK[x/r], leaving the
concurrent semantics to §IV-B.

Consider the program (x:= 0; y:=x+ 1). One execution of
this program is where the write to y uses the sequential value
of x, which is 0:

W x 0 W y 1

To see how this execution is modeled, we first expand out the
syntax sugar to get the program (x:= 0; r:=x; y:= r+1; skip).
Now JskipK is just {∅}, and Jy:= r + 1; skipK includes:

(r + 1 = 1)B (W y 1)→ JskipK[1/y]

5

JskipK = {∅}
Jx:=M ;CK =

⋃
v

(
(M = v)B (W x v)→ JCK[M/x]

)
Jr:=x;CK = JCK[x/r] ∪

⋃
v (Rx v)→ JCK[x/r]

Jif (M) {C } else {D }K =
(
(M 6= 0)B JCK

)
‖
(
(M = 0)B JDK

)
JC ||DK = JCK ‖ JDK

Jvarx;CK = νx . JCK

Fig. 1. Semantics of a concurrent shared-memory language

which contains the pomset:

r + 1 = 1 |W y 1

expressing that this program can write 1 to y, as long as the
precondition (r + 1 = 1) is satisfied. Now Jr:=x; y:= r +
1; skipK has two cases, the sequential case (which does not
introduce a read action) and the concurrent case (which does).
For the moment, we are interested in the sequential case:

Jy:= r + 1; skipK[x/r]

which contains the pomset:

x+ 1 = 1 |W y 1

In this pomset, the precondition is (x + 1 = 1), which
specifies a property of the thread-local value of x. Finally
Jx:= 0; r:=x; y:= r + 1; skipK includes:

(0 = 0)B (W x 0)→ Jr:=x; y:= r + 1; skipK[0/x]

which contains the pomset:

0 = 0 |W x 0 0 = 0 ∧ 0 + 1 = 1 |W y 1

all of whose preconditions are tautologies, so this has the
expected behavior:

W x 0 W y 1

There is no dependency between (W x 0) and (W y 1), since
(0 = 0 ∧ 0 + 1 = 1) is independent of x.

This example demonstrates how preconditions capture the
sequential semantics of memory. In an execution containing
an event with label (φ | a), one way the precondition φ can
be discharged is by an assignment x:=M , which performs a
substitution [M/x]. This is a variant of the Hoare semantics of
assignment [18], where if C has precondition φ then x:=M ;C
has precondition φ[M/x].

B. Concurrent memory accesses

We now turn to the case of concurrent accesses to memory.
Consider the program (x:= 1 || y:=x + 1). In executions of
this program, it is possible for the second thread to perform a
concurrent read of x:

W x 1 Rx 1 W y 2

To see how this execution is modeled, we first expand out the
syntax sugar to get the program (x:= 1; skip || r:=x; y:= r +
1; skip). As before, Jy:= r + 1; skipK includes:

(r + 1 = 2)B (W y 2)→ JskipK[2/y]

which contains the pomset:

r + 1 = 2 |W y 2

As before, Jr:=x; y:= r+ 1; skipK has two cases. We are now
interested in the concurrent case, which includes:

(Rx 1)→ Jy:= r + 1; skipK[x/r]

which contains the pomset:

Rx 1 W y 2

Note that (Rx 1) reads 1 from x, and while (x+ 1 = 2)[1/x]
is a tautology, (x+1 = 2) is not, and so there is a dependency
(Rx 1) < (W y 2).

Now, Jx:= 1; skipK includes the pomset:

W x 1

and so Jx:= 1; skip || r:=x; y:= r + 1; skipK includes:

W x 1 Rx 1 W y 2

as expected, including a reads-from dependency (W x 1) <
(Rx 1).

This example demonstrates how read and write events
capture the concurrent semantics of memory. In an execution
containing an event with label (Rx v), if the execution is x-
closed, then there must be an event it reads from, for example
one labeled (W x v).

C. Control dependencies

Conditionals introduce control dependencies, for example
consider the program:

r:= z; if (r) {x:= 1 } else { y:= 2 }

This includes executions in which the false branch is taken:

R z 0 W x 1 W y 2

6

and ones where the true branch is taken:

R z 1 W x 1 W y 2

In both cases, we record the actions in the branch that was not
taken. This is a novel feature of this model, and is intended
to capture speculative evaluation. In §V-A we will show how
this model captures Spectre-like information flow attacks, once
the attacker is provided with the ability to observe such
speculations.

To see how these executions are modeled, consider the
semantics of Jx:= 1; skipK, which contains any pomset of the
form:

φ |W x 1

in particular it contains:

r 6= 0 |W x 1

Similarly Jy:= 2; skipK contains:

r = 0 |W y 2

and so Jif (r) {x:= 1; skip } else { y:= 2; skip }K contains:

r 6= 0 |W x 1 r = 0 |W y 2

Now, the semantics of concurrent read performs substitutions,
for example:

R z 0 0 6= 0 |W x 1 0 = 0 |W y 2

which gives the required pomset:

R z 0 W x 1 W y 2

Note that the precondition r = 0 is dependent on r, and so
there is a dependency (R z 0) < (W y 2), modeling the control
dependency introduced by the conditional.

D. Control independencies

In most models of control dependencies, the dependency
relation is syntactic, based on whether the action occurs
syntactically inside a conditional. In contrast, the notion in
this model is semantic: if an action can occur on both sides
of a conditional, there is no control dependency. Consider a
variant of the example from §IV-C:

r:= z; if (r) {x:= 1 } else {x:= 1 }

This has the expected execution in which the control depen-
dencies exist:

R z 0 W x 1 W x 1

but it also has an execution in which the two writes of 1 to x
are merged, resulting in no dependency:

R z 0 W x 1

To see how this arises, consider the definition of
Jif (r) {x:= 1; skip } else {x:= 1; skip }K:

P1 ‖ P2 where P1 = (r 6= 0)B Jx:= 1; skipK
P2 = (r = 0)B Jx:= 1; skipK

Now, one pomset in P1 is:

r 6= 0 |W x 1

that is P1 where:

E1 = {e} λ1(e) = (r 6= 0,W x 1)

and similarly, one pomset in P2 is:

r = 0 |W x 1

that is P2 where:

E2 = {e} λ2(e) = (r = 0,W x 1)

Crucially, in the definition of P1 ‖ P2 there is no requirement
that E1 and E2 are disjoint, and in this case they overlap at
e. As a result, one pomset in P1 ‖ P2 is P0 where:

E0 = {e} λ0(e) = (r 6= 0 ∨ r = 0,W x 1)

that is:
W x 1

Note that this pomset has no precondition dependent on r,
since (r 6= 0 ∨ r = 0) does not depend on r, which is why
we end up with an execution without a control dependency:

R z 0 W x 1

This semantics captures compiler optimizations which may,
for example, merge code executed on both branches of a
conditional, or hoist constant assignments out of loops.

We can now see the counterintuitive behavior of condition-
als in the presence of control dependencies. There are pro-
grams such as (if (z) {x:= 1 } else {x:= 1 }) with executions
in which (W x 1) is independent of (R z 1):

R z 1 W x 1

while programs such as (if (z) {x:= 1 } else { y:= 2 }) only
have executions in which (W x 1) is dependent on (R z 1):

R z 1 W x 1 W y 2

These programs have executions with different dependency
relations, depending only on conditional branches that were
not taken. In §VI-A we shall see that this has security
implications, since relaxed memory can observe dependency.

7

V. ATTACKS ON SPECULATIVE EXECUTION

In this section, we show how known attacks on speculative
execution can be modeled. In §V-A, we discuss Spectre. In
§V-B, we describe speculation barriers for defense against
Spectre. In §V-C, we discuss attacks on transactions.

In each attack, there is a high-security variable SECRET,
and the goal of the attacker is to learn one bit of information
from SECRET. The Spectre and PRIME+ABORT attacks ex-
ploit optimizations in hardware, and so can be mounted against
a dynamic SECRET.

A. Spectre

We give a simplified model of Spectre attacks, ignoring the
details of cache timing. In this model, we extend programs
with the ability to tell whether a memory location has been
touched (in practice this is implemented using timing attacks
on the cache). For example, we can model Spectre by:

var a; if (canRead(SECRET)) { a[SECRET]:= 1 }
else if (touched a[0]) {x:= 0 }
else if (touched a[1]) {x:= 1 }

This is a low-security program, which is attempting to discover
the value of a high-security variable SECRET. The low-
security program is allowed to attempt to escalate its privileges
by checking that it is allowed to read a high-security variable:

if (canRead(SECRET)) { code allowed to read SECRET }
else { code not allowed to read SECRET }

In this case, canRead(SECRET) is false, so the fallback code
is executed. Unfortunately, the escalated code is speculatively
evaluated, which allows information to leak by testing for
which memory locations have been touched.

Attacks may realize the abstract notions in various ways.
For example, in variant 1 of Spectre, the dynamic security
check is implemented as an array bounds check.

We model the touched test by introducing a new action
(Tx), and defining:

Jif (touchedx) {C } else {D }K
= ((Tx)→ JCK) ∪ JDK

Implementations of touched use cache timing, but their suc-
cess can be modeled without needing to be precise about such
microarchitectural details:
• if λ(e) = (φ | Tx) then there is d |> e where d reads or

writes x.
Note that there is no requirement that d be satisfiable, and
indeed Spectre has the execution:

R SECRET 1 W a[1] 1 T a[1] W x 1

but (assuming a successful implementation of touched) not:

R SECRET 0 W a[0] 1 T a[1] W x 1

Thus, the attacker has managed to leak the value of a high-
security location to a low-security one: if (W x 1) is observed,
the SECRET must have been 1.

This shows how our model of speculation can express the
way in which Spectre-like attacks bypass dynamic security
checks, without giving a treatment of microarchitecture.

B. Speculation barriers

The ability to model Spectre is useful, but really we would
like to model defenses against such attacks, and provide some
confidence in the correctness of the defense. One such defense
which fits naturally in our model is speculation barriers, which
prevent code from being speculatively executed. For example,
we could introduce such a barrier, and require that a barrier
is introduced on each security check:

if (canRead(SECRET)) { barrier; · · · } else { · · · }

To model barriers, we introduce a new action SB and define:

Jbarrier;CK = {∅} ∪ ((SB)→ JCK)

Implementations of barrier make use of hardware barriers
which halt speculative execution until all instructions up to the
barrier have been retired. Such barriers are successful when:
• if λ(e) = (φ | SB) then φ is satisfiable.

For example, a successful implementation of barriers disallows
the execution of Spectre:

SB R SECRET 1 W a[1] 1 T a[1] W x 1

One might expect that this is a successful (albeit expensive)
defense against Spectre, but it is not, unless the compiler
is aware that barrier cannot be lifted out of a conditional.
An unaware compiler might perform common subexpression
elimination on barriers, allowing the attacker to introduce a
barrier to fool a compiler into optimizing the safe:

if (canRead(SECRET)) { barrier; · · · } else { barrier; · · · }

into the unsafe:

barrier; if (canRead(SECRET)) { · · · } else { · · · }

To model the requirement that barriers are not moved past con-
ditionals, we make them unmergeable: SB events on different
arms of a conditional cannot be merged. With this requirement,
we can show that barriers act as a defense against Spectre by
first showing that JDK has the same successful executions as:

Jif (canRead(SECRET)) { barrier;C } else {D }K

and then showing that the semantics which only looks at
successful executions is compositional: if JDK has the same
successful executions as JD′K then JC[D]K has the same
successful executions as JC[D′]K for any “program with a
hole” C[•]. Compositional reasoning is what fails when SB is
mergeable, as shown by the attack against a compiler which
blindly performs common subexpression elimination.

To realize a speculation barrier in microarchitecture, it is
likely sufficient for the barrier to stop any further speculation
until the barrier is known to succeed. There is experimental
evidence that Intel’s mfence instruction has the effect of a
speculation barrier in some contexts [41, §VII-D].

8

C. Transactions

We present a model of transactional memory [27] that is
sufficient to capture PRIME+ABORT attacks [12]. We make
several simplifying assumptions: transactions are serializable,
strongly isolated, and only abort due to cache conflicts.

The action (B v) represents the begin of a transaction with id
v, and (C v) represents the corresponding commit. We model a
language in which transactions have explicit identifiers (which
we elide in examples) and abort handlers (which we elide
when they are empty):

Jbegin v;E; onabort v {D }K
= (B v)→

(
JEK ∪

(
(falseB JEK) ‖ JDK

))
Jcommit v;DK

= (C v)→ JDK

The semantics of a transaction has two cases: a committed
case (executing only the transaction body) and an aborted case
(executing both the body and the recovery code, where the
body is marked unsatisfiable). For example, two executions of
(begin;x:= 1;x:= 2; commit; onabort {y:= 1 }) are:

B W x 1 W x 2 C

B W x 1 W x 2 C W y 1

At top level, we require that pomsets be serializable, as defined
below.

Definition V.1. We say that event c matches b if λ(c) = (C v)
and λ(b) = (B v). We say that begin event b begins e if b ≤ e
and there is no intervening matching commit; in this case e
belongs to b. We say that commit event c commits e if e ≤ c
and there is no intervening matching begin.

Definition V.2. A pomset is serializable if:

1) no two begins have the same id,
2) every commit follows the matching begin,
3) ≤ totally orders tautological begins and commits,
4) if b begins e, but not d, and d ≤ e then d ≤ b,
5) if c ends e, but not d, and e ≤ d then c ≤ d,
6) if e and d belong to b and read the same location, then

both read the same value, and
7) if e belongs to b, then e implies some matching c that

ends e.

Conditions 1-5 ensure serializability of committed trans-
actions. Conditions 4-6 also ensure strong isolation for non-
transactional events [13]. Condition 7 ensures that all events in
aborted transactions are unsatisfiable. For example Conditions
5 and 7 rule out executions (which violate strong isolation and

atomicity):

B W x 0 W x 1 C Rx 0

B W x 0 W x 1 C W y 1

In order to model PRIME+ABORT, we need a mechanism
for modeling why a transaction aborts, as this can be used as a
back channel. We model a simple form of concurrent transac-
tion, which aborts when it encounters a memory conflict—this
is similar to the treatment of touched in §V-A.

Definition V.3. A commit event c matching b aborts due to
memory conflict if there is some e ended by c, and some
tautologous b |> d |> c that does not belong to b such that
e and d touch the same location.

The attack requires an honest agent whose access pattern
depends upon a secret. Such an honest agent is:

a[SECRET] := 1

Then the attacker program

begin; a[1]:= 0; r:= commit; onabort {x:= 1 }

can write 1 to x if the SECRET is 1, in which case the
following execution is possible.

W a[1] 1 B W a[1] 0 C W x 1

If the attacker knows that commits only abort due to memory
conflicts, then this attack is an information flow, since the
memory conflict only happens when the SECRET is 1.

The attacker code here must have write access to the high
security variable a. Such a “write up” is allowed by secrecy
analyses such as the Smith-Volpano type system [39], which
is meant to guarantee noninterference.

If we require that the attacker and honest agent access
disjoint locations in memory, then we must include a bit
of microarchitecture to model the attack. Suppose that the
set of locations X is partitioned into cache sets and update
Definition V.3 so that the commit event aborts due to memory
conflict if e and d touch locations in the same cache set.

PRIME+ABORT exploits an honest agent whose cache-set
access pattern depends upon a secret. If a[0] and a[1] belong
to separate cache sets, then such an honest agent is, as before:

a[SECRET] := 1

The attack relies on discovery of some y which belongs to the
cache-set of a[1]. Then the attack can be written as:

begin; y:= 0; r:= commit; onabort {x:= 1 }

As before, if the attacker knows that commits only abort due
to memory conflicts, then there is an information flow, since
the memory conflict only happens when the SECRET is 1.

9

This style of attack can be thwarted by requiring that the
honest agent and attack code access disjoint cache sets. This
approach is pursued in [22].

Another defense is to require a speculation barrier at the
beginning of each transaction. This would have the effect,
however, of undermining any optimistic execution strategy for
transactions: the transaction would only be able to begin when
it is known that its commit will succeed.

VI. ATTACKS ON COMPILER OPTIMIZATIONS

In this section, we model two attacks on compiler op-
timizations. The first attack exploits reordering allowed by
relaxed memory models (§VI-A). The second exploits dead
store elimination (§VI-B).

As in the previous section, the goal of the attacker is to
learn one bit of information from the high-security SECRET.
The attacks on compiler optimizations require the SECRET to
be known to the compiler, for example a static SECRET or a
JIT compiler.

To defend against these attacks it is sufficient to require a
traditional memory fence after each security check: compilers
do not reorder instructions over fences.

A. Relaxed memory orders

Consider an attacker program, again using dynamic security
checks to try to learn a SECRET. Whereas Spectre uses
hardware capabilities, which have to be modeled by adding
extra capabilities to the language, this new attacker works
by exploiting relaxed memory which can result in unexpected
information flows. The attacker program is:

varx:= 0; var y:= 0;
y:=x || if (y== 0) {x:= 1 }

else if (canRead(SECRET)) {x:= SECRET }
else {x:= 1; z:= 1 }

In the case where SECRET is 2, this has many executions,
one of which is:

W x 0 W y 0

Rx 0 W y 0

R y 0 W x 1 W x 2 W z 1

but there are no executions which exhibit (W z 1), since any
attempt to do so produces a cycle, since the value written to
x has a control dependency on the value read from y:

W x 0 W y 0

Rx 1 W y 1

R y 1 W x 1 W x 2 W z 1

In the case where SECRET is 1, there is an execution:

W x 0 W y 0

Rx 1 W y 1

R y 1 W x 1 W z 1

Note that in this case, there is no dependency from (R y 1)
to (W x 1). This lack of dependency makes the execution
possible. Thus, if the attacker sees an execution with (W z 1),
they can conclude that SECRET is 1, which is an information
flow attack.

This attack is not just an artifact of the model, since the
same behavior can be exhibited by compiler optimizations.
Consider the program fragment:

if (y = 0) {x:= 1 }
else if (canRead(SECRET)) {x:= SECRET }
else {x:= 1; z:= 1 }

In the case where SECRET is a constant 1, the compiler can
inline it and lift the assignment to x out of the if statement:

x:= 1; if (y = 0) { }
else if (canRead(SECRET)) { }
else { z:= 1 }

After this optimization, a sequentially consistent execution
exhibits (W z 1). We discuss the practicality of this attack
further in §VII.

B. Dead store elimination

A common compiler optimization is dead store elimination,
in which writes are omitted if they will be overwritten by
a subsequent write later in the same thread. We can model
eliminated writes by ones with an unsatisfiable precondition.
For example, one execution of (x:= 1;x:= 2) || (r:=x) is:

W x 1 W x 2 Rx 2

Recall that for any satisfiable e, if e reads x from d then d is
satisfiable. This means that, although we can eliminate (W x 1)
we cannot eliminate (W x 2).

One heuristic that a compiler might adopt is to only elimi-
nate writes that are guaranteed to be followed by another write
to the same variable. This can be formalized by saying that
a write event d is eliminable if there is a tautology e |< d
which writes to the same location. A model of dead store
elimination is one where, in every pomset, every eliminable
event is unsatisfiable. This model includes the example above.

Note that if dead store elimination is always performed,
then there is an information flow attack similar to the one in
§VI-A. Consider the program:

y:=x ||x:= 1;
if (canRead(SECRET)) { if (SECRET) {x:= 2 } }
else {x:= 2 }

10

In the case that SECRET is 0, there is an execution:

Rx 1 W y 1 W x 1 φ |W x 2

where φ is (¬canRead(SECRET)), which is not a tautology,
and so the (W x 1) event is not eliminated. In the case that
SECRET is not 0, the matching execution is:

Rx 2 W y 2 W x 1 W x 2

Now the (W x 2) event is a guaranteed write, so the (W x 1) is
eliminated, and so cannot be read. In the case that the attacker
can rely on dead store elimination taking place, this is an
information flow: if the attacker observes x to be 1, then they
know SECRET is 0. We return to this attack in §VII.

VII. EXPERIMENTS

One theme of this paper is that optimizations not typically
part of formal abstractions can result in information flow leaks.
This is typified by the Spectre attack, which leverages spec-
ulative execution, a hardware optimization. §VI-A and §VI-B
presented other attacks along the same line, which leverage
compiler optimizations. These attacks also, unlike Spectre, do
not rely on timing side channels, or indeed timers of any kind,
bypassing many common Spectre mitigations [24, 45].

In this section we present implementations of the attacks
described in §VI-A and §VI-B, in both cases exploiting
compiler optimizations to construct an information flow attack.
We demonstrate the efficacy of our proof-of-concept attacks
against the clang and gcc C compilers. All of our experiments
are performed on a Debian 9 machine with an Intel i7-6500U
processor and 8 GB RAM; we test against gcc 6.3.0 and
clang 3.8.

A. Attacker model

As explained in Section V, our model expresses a variety
of attacks with differing attacker models. The Spectre (§V-A)
and PRIME+ABORT (§V-C) attacks exploit optimizations in
hardware, and so can be mounted against a dynamic SECRET.
Our model captures this appropriately. In contrast, the attacks
from §VI-A and §VI-B leverage compiler optimizations and
require the SECRETto be known to the compiler, for example
a static SECRETor a JIT compiler. As our experimental section
is devoted to these latter (novel) attacks, we discuss the
attacker model for these attacks in more detail.

In the attacker model for the compiler-optimization attacks,
we assume that there is a SECRET hardcoded into an ap-
plication; for instance, SECRET may be an API key. This
SECRET is known at compile time, but may not be accessed
except behind a security check. Since the attacker is running
with low security privileges, the security check always fails,
so the attacker can only access the SECRET in dead code.
The attacker’s goal is to learn the value of the SECRET.

As a running hypothetical example, suppose there is a
library that contains a hardcoded SECRET:

static const uint SECRET = 0x1234;
static volatile bool canReadSecret = false;

The attacker is not allowed to write to canReadSecret or read
from SECRET except after performing an if(canReadSecret)
check.

This is not necessarily a realistic attacker model, since in
most cases secrets are only known at run time rather than
compile time, which means that the attacks presented in this
section are more proof-of-concepts rather than immediately
exploitable vulnerabilities. However, the mechanisms we use
are novel and could potentially be applied in other contexts.
For instance, many real-world contexts allow untrusted or
third-party entities to write code in a scripting language which
is then compiled alongside and integrated into a larger applica-
tion, often using a just-in-time (JIT) compiler. JavaScript code
from third-party websites running in a browser is a common
example of this. Although we consider only attacks using C
code against a C compiler, one could imagine a similar attack
using JavaScript against browser JIT compilers, where the
compiler may have access to interesting secrets such as the
browser’s cookie store, and may be able to optimize based
on those secrets. We plan to explore JavaScript attacks of this
type as future work.

B. Load-store reordering attack

We begin by examining the attack in §VI-A in more detail.
We show that by exploiting compiler optimizations which
perform load-store reordering, an attacker can learn the value
of a compile-time SECRET despite only being allowed to
use it inside dead code. We verified that this attack succeeds
against gcc version 6.3.0.

The form of the attack presented in §VI-A works in theory,
but in practice, just because a compiler is allowed to perform
a load-store reordering doesn’t mean that it will. We found
that gcc and clang chose to read y into a register first (before
writing to x), regardless of the value of SECRET. However,
using a similar program we were able to coax gcc to emit a
different ordering of the read of y and the write of x depending
on the value of a SECRET:

varx:= 0; var y:= 0;
y:=x ||x:= 1;

if (canReadSecret) {x:= SECRET }
if (y > 0) { z:= 0 } else { z:= 1 }

Figure 2 shows the assembly output of gcc on this program
in the cases where SECRET is 0 and 1 respectively. In the
case that SECRET is 1, gcc removes the if statement entirely,
and moves the read of y above the write of x. However, when
SECRET is 0, the if statement must remain intact, and gcc
does not move the read of y. This means that if SECRET
is 1, the second thread will always read y== 0 and always
assign z:= 1. However, if SECRET is 0, it is possible that the
first thread may observe x== 1 and write y:= 1 in time for
the second thread to observe y== 1 and thus assign z:= 0. In
this way, we leverage compiler load-store reordering to learn
the value of a compile-time SECRET.

11

SECRET == 0 SECRET == 1

mov s(%rip), %eax
mov $1, x(%rip)
test %eax, %eax
je label1
mov $0, x(%rip)

label1:
mov y(%rip), %eax
test %eax, %eax
sete %eax

mov s(%rip), %eax
mov y(%rip), %eax
mov $1, x(%rip)
test %eax, %eax
sete %eax

Fig. 2. Simplified x86 assembly output from gcc for the main thread of
the load-store reordering attack. In particular, note that the order between
(mov $1, x(%rip)) and (mov y(%rip), %eax) is different in the two cases.
References to the canReadSecret variable have been shortened to s for the
figure.

We extend this attack to leak a secret consisting of an
arbitrary number N of bits. To do this, we compile N copies
of the test function, each performing a boolean test on a single
bit of SECRET. So that the bit value is constant at compile
time, we must compile a separate function for each bit, rather
than execute the same code repeatedly in a loop.

We make three additional tweaks to improve the reliability,
so that the attacker can confidently infer the value of SECRET
based on the observed value of z. First, rather than performing
y:=x only once in the forwarding thread, we perform y:=x
continuously in a loop. This maximizes the probability that,
once x:= 1 occurs in the main thread, y will be immediately
assigned 1 by the forwarding thread and the main thread will
be able to read y== 1.

Second, we wish to lengthen the timing window between
x:= 1 and the read of y in the main thread (in the case
where SECRET is 0 and the read of y remains below x:= 1).
However, we wish to do this in a way that does not block
the reordering of the read of y upwards in the case where
SECRET is 1. We do this by inserting many copies of the line

if (canReadSecret) {x:= SECRET }

instead of just one. In the case where SECRET is 0, this results
in many reads of canReadSecret and many conditional jumps,
which in practice creates a timing window for the forwarding
thread to perform y:=x. However, in the case where SECRET
is 1, all of these inserted lines can be removed just as a single
copy could be. In practice, we found that inserting too many
copies of the line prevents gcc from reordering the read of
y above the write to x as desired; inserting 30 copies was
sufficient to create a timing window while still allowing the
desired reordering.

Finally, we redundantly execute the entire attack several
times, noting the value of z in each case. We note that if any of
the redundant runs produces a value of z== 0 for a particular
bit position, then we can be certain that the corresponding bit
of SECRET must be 0, as it implies the read of y was not
reordered upwards in that particular function. On the other

Redundancy Bandwidth (bits/s) Bitwise Acc Per-run Acc
1 3.14 million 90.89% 1.9%
2 1.56 million 96.04% 8.1%
3 1.04 million 98.09% 10.0%
4 783 thousand 98.98% 24.3%
5 626 thousand 99.71% 50.2%
7 447 thousand 99.91% 70.6%

10 314 thousand 99.991% 93.8%
15 208 thousand 99.994% 95.5%
20 157 thousand 99.9995% 99.2%
30 105 thousand 99.99995% 99.9%

Fig. 3. Performance results for the load-store reordering attack when
leaking a 2048-bit secret. ‘Redundancy’ is the number of redundant runs
performed for error correction; more redundant runs improves accuracy but
reduces bandwidth. ‘Bandwidth’ is the number of bits leaked per second after
accounting for any error correction. ‘Bitwise Accuracy’ is the percentage of
bits that were correct, while ‘Per-run Accuracy’ is the percentage of full 2048-
bit secrets that were correct in all bit positions.

hand, the more runs that produce a value of z== 1 for a
particular bit position, the more certain we can be that the read
of y was reordered above the x:= 1 assignment, and SECRET
is 1.

Figure 3 gives the performance results for this attack against
gcc version 6.3.0. The attack can sustain hundreds of thou-
sands of bits per second leaked with near-perfect accuracy, or
millions of bits per second with error rates of a few percent.
This means that an attacker can leak a 2048-bit secret with
near-perfect accuracy in under 10 ms. Note that this bandwidth
assumes that all copies of the attack function are already
compiled; the cost of compilation is not included here.

C. Dead store elimination attack

In this section we return to the attack in §VI-B based
on dead store elimination. We show that in our attacker
model (given in §VII-A), the attacker is able to exploit dead
store elimination to again learn the value of a compile-time
SECRET despite only being allowed to use it inside dead code.
This attack is even more efficient than the attack on load-
store reordering, and further, we were able to demonstrate its
effectiveness against both gcc and clang.

We start from the simple form of the attack presented
in §VI-B, and extend it to leak a secret consisting of an
arbitrary number of bits, in the same way that we extended
the load-store reordering attack. We make three additional
tweaks to improve the reliability so that the attacker can
confidently infer the value of SECRET. Two of them follow
exactly the same pattern as the reliability tweaks for the load-
store reordering attack in §VII-B — continuously forwarding
x to y in the forwarding thread, and running the entire attack
multiple times. The remaining tweak is again motivated by
increasing the timing window in which the forwarding can
happen, but differs in some details from the implementation
in §VII-B.

To increase the timing window, we insert additional time-
consuming computation immediately following the x:= 1 op-
eration in the main thread. This increases the likelihood that
the listening thread will be able to observe x== 1 (unless the

12

Redundancy Bandwidth (bits/s) Bitwise Acc Per-run Acc
1 1.19 million 99.991% 95.6%
2 597 thousand 99.99986% 99.7%
3 397 thousand 100.0% 100.0%

Fig. 4. Performance results for the dead store elimination attack on clang
when leaking a 2048-bit secret. Terms are the same as defined in the caption
for Figure 3.

Stall amount 10 100 500

Redundancy 1 2.54 million
98.15%

1.54 million
99.996%

584 thousand
99.998%

Redundancy 2 1.24 million
99.73%

774 thousand
100.0%

295 thousand
100.0%

Redundancy 3 841 thousand
99.94%

521 thousand
100.0%

201 thousand
100.0%

Redundancy 4 620 thousand
99.992%

387 thousand
100.0%

145 thousand
100.0%

Fig. 5. Performance results for the dead store elimination attack on gcc
when leaking a 2048-bit secret. Rows give different values of ‘redundancy’
(as defined in previous figures), while columns give amounts of stall time
immediately following the x:= 1 write (as measured in loop iterations).
Each table cell gives the leak bandwidth in bits/sec, followed by the bitwise
accuracy.

x:= 1 write was eliminated). Inserting this computation should
be done without interfering with the dead store elimination
process itself, so that the compiler will continue to eliminate
the x:= 1 write if and only if SECRET was 1. For gcc, we
have a fair amount of freedom with the time-consuming com-
putation — for instance, we can use an arbitrarily long loop.
In fact, we can perform a further optimization by monitoring
the value of the variable y (written to by the listening thread)
and breaking out of the loop early if we see that the listening
thread has already observed x== 1. However, with clang, we
cannot use a loop at all — the time-consuming computation
must be branch-free and, furthermore, must not consist of too
many instructions. Nonetheless, we find that even with these
restrictions, we are able to construct a reliable and fast attack
against both clang and gcc.

Performance results for the dead store elimination attack
against clang are given in Figure 4, and against gcc are given in
Figure 5. Both attacks are faster than the load-store-reordering
attack from §VII-B when comparing settings which give the
same accuracy. In particular, the attack on gcc can leak a 2048-
bit cryptographic key with perfect accuracy (in our tests) in
about 2 ms.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a model of speculative
evaluation and shown that it captures non-trivial properties of
speculations produced by hardware, compiler optimizations,
and transactions. These properties include information flow
attacks: in the case of hardware and transactions this is
modeling known attacks [23, 12], but in the case of compiler
optimizations the attacks are new, and were discovered as a
direct result of developing the model. We have experimentally
validated that the attacks can be carried out against gcc and
clang, though only against secrets known at compile time.

We have tried where possible to abstract away from the
micro-architectural details that enable attackers to exploit spec-
ulation, while still trying to capture the “essence” of Spectre.
There are trade-offs with any such abstraction, as higher-level
abstractions make program behavior easier to understand and
reason about, but at the cost of ignoring potential attacks. One
software developer’s useful abstraction is another’s ignoring
the difficult issues.

As a concrete instance, one feature of Spectre we have
glossed over is the ability of the attacker to influence specu-
lation, for example by training the branch predictor or influ-
encing the contents of caches. We expect that such attacker
influence could be modeled using a mechanism similar to
the speculation barriers of §V-B, but under the control of the
attacker rather than the honest agents.

The paper’s primary focus is not weak memory, and the
model of relaxed memory used in this paper is deliberately
simplified, compared for example to C11 [7, 4]. Nonetheless,
we believe that the model developed in the paper has promise
as a semantics for relaxed memory. Our model appears to
be the first in the literature that both validates all of the
JMM causality test cases and also forbids thin air behavior;
the most prominent existing models are either too permis-
sive [29, 19, 21] or too conservative [20]. In separate work, we
are exploring the usual properties of weak memory, such as
comparisons with sequentially consistent models, optimization
soundness, or compilation soundness. While our model of
transactions shows the flexibility of our model, in this future
work, we will include known features of hardware, including
locks, fences, and read-modify-write instructions. This devel-
opment is not core to the basic findings of this paper.

The design space for transactions is very rich [13]. We have
only presented one design choice, and it remains to be seen
how other design choices could be adopted. For example, we
have chosen not to distinguish commits that are aborted due to
transaction failure from commits which are aborted for other
reasons, such as failed speculation.

In future work, it would be interesting to see if full-
abstraction results for pomsets [36] can be extended to 3-
valued pomsets.

One interesting feature of this model is that (in the language
of [35]) it is a per-candidate execution model, in that the
correctness of an execution only requires looking at that one
execution, not at others. This is explicit in memory models
such as [19, 21] in which “alternative futures” are explored,
in a style reminiscent of Abramsky’s bisimulation as a testing
equivalence [1]. Models of information flow are similar, in
that they require comparing different runs to test for the pres-
ence of dependencies [11]. In contrast, the model presented
here explicitly captures dependency in the pomset order, and
models multiple runs by giving the semantics of if in terms
of a concurrent semantics of both branches. In the parlance
of information flow [3], the humble conditional suffices to
construct a composition operator to detect information flow in
the presence of speculation.

13

REFERENCES

[1] Samson Abramsky. Observation equivalence as a testing equiv-
alence. Theoretical Computer Science, 53(2):225 – 241, 1987.
ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(87)
90065-X. URL http://www.sciencedirect.com/science/article/
pii/030439758790065X.

[2] Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding
cats: Modelling, simulation, testing, and data mining for weak
memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74,
July 2014. ISSN 0164-0925. doi: 10.1145/2627752. URL
http://doi.acm.org/10.1145/2627752.

[3] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure
information flow by self-composition. In Proceedings of the
17th IEEE Workshop on Computer Security Foundations, CSFW
’04, pages 100–114, Washington, DC, USA, 2004. IEEE Com-
puter Society. ISBN 0-7695-2169-X. doi: 10.1109/CSFW.2004.
17. URL https://doi.org/10.1109/CSFW.2004.17.

[4] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and
Tjark Weber. Mathematizing C++ concurrency. In Proceedings
of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’11, pages 55–
66, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0490-
0. doi: 10.1145/1926385.1926394. URL http://doi.acm.org/10.
1145/1926385.1926394.

[5] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean
Pichon-Pharabod, and Peter Sewell. The problem of program-
ming language concurrency semantics. In Proc. European Symp.
on Programming, pages 283–307, 2015.

[6] Arnab Kumar Biswas, Dipak Ghosal, and Shishir Nagaraja. A
survey of timing channels and countermeasures. ACM Comput.
Surv., 50(1):6:1–6:39, March 2017. ISSN 0360-0300. doi: 10.
1145/3023872. URL http://doi.acm.org/10.1145/3023872.

[7] Hans-J. Boehm and Sarita V. Adve. Foundations of the C++
concurrency memory model. In Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’08, pages 68–78, New York, NY, USA,
2008. ACM. ISBN 978-1-59593-860-2. doi: 10.1145/1375581.
1375591. URL http://doi.acm.org/10.1145/1375581.1375591.

[8] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory
of communicating sequential processes. J. ACM, 31(3):560–
599, June 1984. ISSN 0004-5411. doi: 10.1145/828.833. URL
http://doi.acm.org/10.1145/828.833.

[9] Andrew A. Chien. Computer architecture: Disruption from
above. Commun. ACM, 61(9):5–5, August 2018. ISSN 0001-
0782. doi: 10.1145/3243136. URL http://doi.acm.org/10.1145/
3243136.

[10] Nathan Chong, Tyler Sorensen, and John Wickerson. The
semantics of transactions and weak memory in x86, power,
arm, and C++. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implemen-
tation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018,
pages 211–225, 2018. doi: 10.1145/3192366.3192373. URL
http://doi.acm.org/10.1145/3192366.3192373.

[11] Michael R. Clarkson and Fred B. Schneider. Hyperproperties.
J. Comput. Secur., 18(6):1157–1210, September 2010. ISSN
0926-227X. URL http://dl.acm.org/citation.cfm?id=1891823.
1891830.

[12] Craig Disselkoen, David Kohlbrenner, Leo Porter, and
Dean M. Tullsen. Prime+Abort: A timer-free high-
precision L3 cache attack using Intel TSX. In Engin
Kirda and Thomas Ristenpart, editors, 26th USENIX Se-
curity Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017., pages 51–67. USENIX As-
sociation, 2017. URL https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/disselkoen.

[13] Brijesh Dongol, Radha Jagadeesan, and James Riely. Trans-

actions in relaxed memory architectures. PACMPL, 2(POPL):
18:1–18:29, 2018. doi: 10.1145/3158106. URL http://doi.acm.
org/10.1145/3158106.

[14] ECMA TC39. ECMAScript 2017 language specification. https:
//www.ecma-international.org/ecma-262/8.0/, 2017.

[15] Andrew Ferraiuolo, Mark Zhao, Andrew C. Myers, and G. Ed-
ward Suh. Hyperflow: A processor architecture for non-
malleable, timing-safe information-flow security. In 25th
ACM Conf. on Computer and Communications Security (CCS),
October 2018. URL http://www.cs.cornell.edu/andru/papers/
hyperflow.

[16] Jay L. Gischer. The equational theory of pomsets. Theo-
retical Computer Science, 61(2):199–224, 1988. ISSN 0304-
3975. doi: 10.1016/0304-3975(88)90124-7. URL http://www.
sciencedirect.com/science/article/pii/0304397588901247.

[17] James W. Gray, III. Toward a mathematical foundation for
information flow security. J. Comput. Secur., 1(3-4):255–294,
May 1992. ISSN 0926-227X. URL http://dl.acm.org/citation.
cfm?id=2699806.2699811.

[18] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, October 1969. ISSN 0001-
0782. doi: 10.1145/363235.363259. URL http://doi.acm.org/
10.1145/363235.363259.

[19] Radha Jagadeesan, Corin Pitcher, and James Riely. Generative
operational semantics for relaxed memory models. In Pro-
ceedings of the 19th European Conference on Programming
Languages and Systems, ESOP’10, pages 307–326, Berlin,
Heidelberg, 2010. Springer-Verlag. ISBN 3-642-11956-5, 978-
3-642-11956-9. doi: 10.1007/978-3-642-11957-6_17. URL
http://dx.doi.org/10.1007/978-3-642-11957-6_17.

[20] A. Jeffrey and J. Riely. On thin air reads towards an event struc-
tures model of relaxed memory. In M. Grohe, E. Koskinen, and
N. Shankar, editors, Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, New York,
NY, USA, July 5-8, 2016, pages 759–767. ACM, 2016. ISBN
978-1-4503-4391-6. doi: 10.1145/2933575.2934536. URL
http://doi.acm.org/10.1145/2933575.2934536.

[21] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis,
and Derek Dreyer. A promising semantics for relaxed-memory
concurrency. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL
2017, pages 175–189, New York, NY, USA, 2017. ACM. ISBN
978-1-4503-4660-3. doi: 10.1145/3009837.3009850. URL
http://doi.acm.org/10.1145/3009837.3009850.

[22] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe,
Srinivas Devadas, and Joel Emer. DAWG: A defense against
cache timing attacks in speculative execution processors. IACR
Cryptology ePrint Archive, 2018:418, 2018. URL https://eprint.
iacr.org/2018/418.

[23] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
Spectre attacks: Exploiting speculative execution. In 40th IEEE
Symposium on Security and Privacy (S&P’19), 2019.

[24] David Kohlbrenner and Hovav Shacham. Trusted browsers
for uncertain times. In 25th USENIX Security Sym-
posium (USENIX Security 16), pages 463–480, Austin,
TX, 2016. USENIX Association. ISBN 978-1-931971-32-
4. URL https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/kohlbrenner.

[25] Leslie Lamport. On interprocess communication. part I: basic
formalism. Distributed Computing, 1(2):77–85, 1986. doi: 10.
1007/BF01786227. URL https://doi.org/10.1007/BF01786227.

[26] Butler W. Lampson. A note on the confinement problem.
Commun. ACM, 16(10):613–615, October 1973. ISSN 0001-
0782. doi: 10.1145/362375.362389. URL http://doi.acm.org/
10.1145/362375.362389.

14

http://www.sciencedirect.com/science/article/pii/030439758790065X
http://www.sciencedirect.com/science/article/pii/030439758790065X
http://doi.acm.org/10.1145/2627752
https://doi.org/10.1109/CSFW.2004.17
http://doi.acm.org/10.1145/1926385.1926394
http://doi.acm.org/10.1145/1926385.1926394
http://doi.acm.org/10.1145/3023872
http://doi.acm.org/10.1145/1375581.1375591
http://doi.acm.org/10.1145/828.833
http://doi.acm.org/10.1145/3243136
http://doi.acm.org/10.1145/3243136
http://doi.acm.org/10.1145/3192366.3192373
http://dl.acm.org/citation.cfm?id=1891823.1891830
http://dl.acm.org/citation.cfm?id=1891823.1891830
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
http://doi.acm.org/10.1145/3158106
http://doi.acm.org/10.1145/3158106
https://www.ecma-international.org/ecma-262/8.0/
https://www.ecma-international.org/ecma-262/8.0/
http://www.cs.cornell.edu/andru/papers/hyperflow
http://www.cs.cornell.edu/andru/papers/hyperflow
http://www.sciencedirect.com/science/article/pii/0304397588901247
http://www.sciencedirect.com/science/article/pii/0304397588901247
http://dl.acm.org/citation.cfm?id=2699806.2699811
http://dl.acm.org/citation.cfm?id=2699806.2699811
http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/363235.363259
http://dx.doi.org/10.1007/978-3-642-11957-6_17
http://doi.acm.org/10.1145/2933575.2934536
http://doi.acm.org/10.1145/3009837.3009850
https://eprint.iacr.org/2018/418
https://eprint.iacr.org/2018/418
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kohlbrenner
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kohlbrenner
https://doi.org/10.1007/BF01786227
http://doi.acm.org/10.1145/362375.362389
http://doi.acm.org/10.1145/362375.362389

[27] Jim Larus and Ravi Rajwar. Transactional Memory (Synthesis
Lectures on Computer Architecture). Morgan & Claypool
Publishers, 2007. ISBN 1598291246.

[28] A. Lochbihler. Making the Java memory model safe. ACM
Trans. Program. Lang. Syst., 35(4):12:1–12:65, 2013. doi: 10.
1145/2518191. URL http://doi.acm.org/10.1145/2518191.

[29] Jeremy Manson, William Pugh, and Sarita V. Adve. The Java
memory model. SIGPLAN Not., 40(1):378–391, January 2005.
ISSN 0362-1340. doi: 10.1145/1047659.1040336. URL http:
//doi.acm.org/10.1145/1047659.1040336.

[30] H. Mantel, M. Perner, and J. Sauer. Noninterference under
weak memory models. In 2014 IEEE 27th Computer Security
Foundations Symposium, pages 80–94, July 2014. doi: 10.1109/
CSF.2014.14.

[31] Robin Milner. Communicating and Mobile Systems: The π-
calculus. Cambridge University Press, New York, NY, USA,
1999. ISBN 0-521-65869-1.

[32] Andrew C. Myers. Jflow: practical mostly-static information
flow control. In 26th ACM Symp. on Principles of Programming
Languages (POPL), page 228âĂŞ241, January 1999. URL http:
//www.cs.cornell.edu/andru/papers/popl99/popl99.pdf.

[33] Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong.
Information-flow security for interactive programs. In Pro-
ceedings of the 19th IEEE Workshop on Computer Security
Foundations, CSFW ’06, pages 190–201, Washington, DC,
USA, 2006. IEEE Computer Society. ISBN 0-7695-2615-2. doi:
10.1109/CSFW.2006.16. URL https://doi.org/10.1109/CSFW.
2006.16.

[34] Zdzisław Pawlak. Rough sets. International Journal of
Computer & Information Sciences, 11(5):341–356, Oct 1982.
ISSN 1573-7640. doi: 10.1007/BF01001956. URL https:
//doi.org/10.1007/BF01001956.

[35] Jean Pichon-Pharabod and Peter Sewell. A concurrency seman-
tics for relaxed atomics that permits optimisation and avoids
thin-air executions. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’16, pages 622–633, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-3549-2. doi: 10.1145/2837614.
2837616. URL http://doi.acm.org/10.1145/2837614.2837616.

[36] Gordon Plotkin and Vaughan Pratt. Teams can see pomsets
(preliminary version). In Proceedings of the DIMACS Workshop
on Partial Order Methods in Verification, POMIV ’96, pages
117–128, New York, NY, USA, 1997. AMS Press, Inc. ISBN
0-8218-0579-7. URL http://dl.acm.org/citation.cfm?id=266557.
266600.

[37] W. Pugh. Causality test cases. http://www.cs.umd.edu/~pugh/
java/memoryModel/CausalityTestCases.html, 2004.

[38] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE J.Sel. A. Commun., 21(1):5–19, September
2006. ISSN 0733-8716. doi: 10.1109/JSAC.2002.806121. URL
https://doi.org/10.1109/JSAC.2002.806121.

[39] Geoffrey Smith and Dennis Volpano. Secure information flow
in a multi-threaded imperative language. In Proceedings of
the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’98, pages 355–364, New
York, NY, USA, 1998. ACM. ISBN 0-89791-979-3. doi: 10.
1145/268946.268975. URL http://doi.acm.org/10.1145/268946.
268975.

[40] Inc. CORPORATE SPARC. The SPARC Architecture Manual
(version 9). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1994.

[41] Caroline Trippel, Daniel Lustig, and Margaret Martonosi.
Checkmate: Automated synthesis of hardware exploits and secu-
rity litmus tests. In 51st Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO 2018, Fukuoka, Japan,
October 20-24, 2018, pages 947–960. IEEE, 2018. ISBN
978-1-5386-6240-3. doi: 10.1109/MICRO.2018.00081. URL

https://doi.org/10.1109/MICRO.2018.00081.
[42] Alasdair Urquhart. Many-valued Logic, pages 71–116. Springer

Netherlands, Dordrecht, 1986. ISBN 978-94-009-5203-4. doi:
10.1007/978-94-009-5203-4_2. URL https://doi.org/10.1007/
978-94-009-5203-4_2.

[43] Jeffrey A. Vaughan and Todd Millstein. Secure information
flow for concurrent programs under total store order. In
Proceedings of the 2012 IEEE 25th Computer Security Foun-
dations Symposium, CSF ’12, pages 19–29, Washington, DC,
USA, 2012. IEEE Computer Society. ISBN 978-0-7695-4718-
3. doi: 10.1109/CSF.2012.20. URL http://dx.doi.org/10.1109/
CSF.2012.20.

[44] Jaroslav Ševčík. Program Transformations in Weak Memory
Models. PhD thesis, Laboratory for Foundations of Computer
Science, University of Edinburgh, 2008.

[45] Luke Wagner. Mitigations landing for a new class of
timing attack. https://blog.mozilla.org/security/2018/01/03/
mitigations-landing-new-class-timing-attack/, 2018.

[46] J. Todd Wittbold and Dale M. Johnson. Information flow in
nondeterministic systems. In IEEE Symposium on Security and
Privacy, 1990.

[47] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers.
Language-based control and mitigation of timing channels.
SIGPLAN Not., 47(6):99–110, June 2012. ISSN 0362-1340. doi:
10.1145/2345156.2254078. URL http://doi.acm.org/10.1145/
2345156.2254078.

[48] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and
Steve Zdancewic. Formalizing the LLVM intermediate repre-
sentation for verified program transformations. In John Field
and Michael Hicks, editors, Proceedings of the 39th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2012, Philadelphia, Pennsylvania, USA, Jan-
uary 22-28, 2012, pages 427–440. ACM, 2012. ISBN 978-
1-4503-1083-3. doi: 10.1145/2103656.2103709. URL http:
//doi.acm.org/10.1145/2103656.2103709.

APPENDIX

A. Operations on sets of pomsets

Here we give the formal definitions for the operations
described at the beginning of §IV.

In order to model speculation barriers in §V-B, we partition
the actions into mergeable and unmergeable.

In transactional memory, begin and commit actions are
memory fences: that is, they are a barrier to reordering memory
accesses. To capture this (and other memory barriers), we
identify sets Rel and Acq ⊆ A. For transactions, we have
(B v) ∈ Acq for begins, (C v) ∈ Rel for commits. We say that
a is a release if a ∈ Rel and a is an acquire if a ∈ Acq.

Definition A.1. Let a → P be the set P ′ where P ′ ∈ P ′
whenever there is P ∈ P such that:
• E′ = E ∪ {c},
• if d ≤ e then d ≤′ e,
• if d |< e then d |<′ e,
• if c ∈ E then c is mergeable,
• λ′(c) = (φ, a), and
• if λ(e) = (ψ | b) then λ′(e) = (ψ′ | b), where:

– c <′ e whenever a is an acquire or b is a release,
– if a is an acquire then ψ is independent of every y,
– if a and b both touch the same location and one is a

write, then c |>′ e, and

15

http://doi.acm.org/10.1145/2518191
http://doi.acm.org/10.1145/1047659.1040336
http://doi.acm.org/10.1145/1047659.1040336
http://www.cs.cornell.edu/andru/papers/popl99/popl99.pdf
http://www.cs.cornell.edu/andru/papers/popl99/popl99.pdf
https://doi.org/10.1109/CSFW.2006.16
https://doi.org/10.1109/CSFW.2006.16
https://doi.org/10.1007/BF01001956
https://doi.org/10.1007/BF01001956
http://doi.acm.org/10.1145/2837614.2837616
http://dl.acm.org/citation.cfm?id=266557.266600
http://dl.acm.org/citation.cfm?id=266557.266600
http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html
http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html
https://doi.org/10.1109/JSAC.2002.806121
http://doi.acm.org/10.1145/268946.268975
http://doi.acm.org/10.1145/268946.268975
https://doi.org/10.1109/MICRO.2018.00081
https://doi.org/10.1007/978-94-009-5203-4_2
https://doi.org/10.1007/978-94-009-5203-4_2
http://dx.doi.org/10.1109/CSF.2012.20
http://dx.doi.org/10.1109/CSF.2012.20
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
http://doi.acm.org/10.1145/2345156.2254078
http://doi.acm.org/10.1145/2345156.2254078
http://doi.acm.org/10.1145/2103656.2103709
http://doi.acm.org/10.1145/2103656.2103709

– ψ′ implies

ψ[v/x]
if a reads v from x and c <′ e

[DEPENDENT READ]
ψ[v/x] and ψ

if a reads v from x
[INDEPENDENT READ]

ψ
otherwise

[NON-READ]

The first constraint ensures that events are ordered before
a release and after an acquire. The second constraint ensures
that thread-local reads do not cross acquire fences.

The tricky parts of the definition are the named cases, which
place requirements on read dependencies. If a reads v from
x, we have to decide whether e depends on c for some e with
old precondition ψ and new precondition ψ′. The first case
[DEPENDENT READ] is that the dependency exists, in which
case ψ′ just has to imply ψ[v/x]. The more interesting case is
[INDEPENDENT READ], in which case ψ′ has to imply ψ[v/x]
and ψ. This corresponds to a case where e can be performed
with or without c. In particular, if ψ is independent of x then
we can pick ψ′ to be ψ, and the independent read case will
apply.

Definition A.2. Let P0 ∈ (P1 ‖ P2) whenever there are P1 ∈
P1 and P2 ∈ P2 such that:

• E0 = E1 ∪ E2,
• if e ≤1 d or e ≤2 d then e ≤0 d,
• if e |<1 d or e |<2 d then e |<0 d,
• if e ∈ E1 ∩ E2 then e is mergeable,
• if λ0(e) = (φ0 | a) then either:

– λ1(e) = (φ1 | a) and λ2(e) = (φ2 | a) and φ0
implies φ1 ∨ φ2,

– λ1(e) = (φ1 | a) and e 6∈ E2 and φ0 implies φ1, or
– λ2(e) = (φ2 | a) and e 6∈ E1 and φ0 implies φ2.

Definition A.3. Let P[M/x] be the set P ′ where P ′ ∈ P ′
whenever there is P ∈ P such that:

• E′ = E,
• if d ≤ e then d ≤′ e, and
• if d |< e then d |<′ e, and
• if λ(e) = (ψ | a) then λ′(e) = (ψ[M/x] | a).

and similarly for P[x/r].

Definition A.4. Let (φ B P) be the subset of P such that
P ∈ P whenever:

• if λ(e) = (ψ | a) then φ implies ψ.

Definition A.5. A 3-valued pomset is x-closed if, for every
e ∈ E:

• e is independent of x, and
• if e reads from x, then there is a d such that e can read
x from d.

The definitions as they stand allow cycles in weak
edges. This is necessary for examples such as (x:= y −

1;x:= 1 || y:=x− 1; y:= 1) which has execution:

R y 1 W x 0 W x 1 Rx 1 W y 0 W y 1

However, in order to model release/acquire fencing in trans-
actions, we need to ban executions such as:

W x 0

W x 1

C B

Rx 0

Rx 1

The problem here is the weak cycle between (W x 0) and
(W x 1), which according to Definition III.3, allows both
(Rx 0) and (Rx 1), even though one of them must be a stale
value. This can be addressed by requiring |< to form a per-
location partial order. This is a form of partial coherence, and
can be strengthened to total coherence by requiring |< to be a
per-location total order.

Definition A.6. A 3-valued pomset is partially (resp. totally)
x-coherent if, when restricted to events which touch x, |<
forms a partial (resp. total) order.

Definition A.7. Let (νx . P) be the subset of P such that
P ∈ P whenever P is x-closed and partially x-coherent.

B. Blockers

Recall the preliminary definition of reads-from in §III-B,
which defined an x-blocker to be and event c that writes to x
such that d < c < e. Were we to adopt this definition, then
concurrent threads could turn events that were not x-blockers
into an x-blocker, even if the new thread does not mention x.

To see this, consider the program (x:= 1; y:=x ||x:= z +
1; y:=x || if (z = 2) { r:=x }) with execution:

W x 1 R z 1 W x 2 R z 2 Rx 1

Rx 1

W y 1

Rx 2

W y 2

and the program (z:= y; z:= y) with execution:

R y 1 W z 1 R y 2 W z 2

16

If these are placed in parallel, then a possible execution is:

W x 1 R z 1 W x 2 R z 2 Rx 1

Rx 1

W y 1

Rx 2

W y 2

R y 1 W z 1 R y 2 W z 2

and now the (W x 2) event is an x-blocker, so (Rx 1) cannot
read from (W x 1).

In the final definition of reads-from in §III-B we ruled out
x-blockers by requiring that any event c that writes to x has
either d |< c or c |< e. With this definition, in order for (Rx 1)
to read from (W x 1), we either need (W x 1) |< (W x 2) or
(W x 2) |< (Rx 1), for example:

W x 1 R z 1 W x 2 R z 2 Rx 1

Rx 1

W y 1

Rx 2

W y 2

then putting this in parallel as before results in:

W x 1 R z 1 W x 2 R z 2 Rx 1

Rx 1

W y 1

Rx 2

W y 2

R y 1 W z 1 R y 2 W z 2

but this is not a valid 3-valued pomset, since (W x 2) < (Rx 1)
but also (W x 2) |< (Rx 1), which is a contradiction.

C. Release/acquire synchronization

We can develop a simple model of release/acquire synchro-
nization using the following actions:
• (Relx v), a release action that writes v to x, and
• (Acqx v), an acquire action that reads v from x.

The semantics of programs with releasing write and acquir-
ing read are similar to regular write and read, with Relx v
replacing W x v and Acqx v replacing Rx v:

Jrelx:=M ;CK =
⋃

v

(
(M = v)B (Relx v)→ JCK[M/x]

)
Jacq r:=x;CK =

⋃
v (Acqx v)→ JCK[x/r]

To see the need for the first constraint on prefixing, consider
the program:

varx:= 0; var f := 0; (x:= 1; rel f := 1 || acq r:= f ; s:=x)

This has an execution:

W x 0 W f 0

W x 1 Rel f 1 Acq f 1 Rx 1

but not:

W x 0 W f 0

W x 1 Rel f 1 Acq f 1 Rx 0

since (W x 0) |> (W x 1) < (Rx 0), so this pomset does not
satisfy the requirements to be x-closed. If we replace the
release with a plain write, then the outcome (Acq f 1) and
(Rx 0) is possible:

W x 0 W f 0

W x 1 W f 1 Acq f 1 Rx 0

since no order is required between (W x 1) and (W f 1). Sym-
metrically, if we replace the acquire of the original program
with a plain read, then the outcome (R f 1) and (Rx 0) is
possible.

D. Relaxed memory

In §VI-A we presented an information flow attack on re-
laxed memory, similar to Spectre in that it relies on speculative
evaluation. Unlike Spectre it does not depend on timing
attacks, but instead is based on the sensitivity of relaxed
memory to data dependencies.

Our model includes concurrent memory accesses, which can
introduce concurrent reads-from. Since we are allowing events
to be partially ordered, this gives a simple model of relaxed
memory. For example an independent read independent write
(IRIW) example is:

x:= 0;x:=x+ 1 || y:= 0; y:= y + 1
|| r1:=x; r2:= y || s1:= y; s2:=x

which includes the execution:

W x 0 W x 1 W y 0 W y 1

R y 1 Rx 0 Rx 1 R y 0

This model does not introduce thin-air reads (TAR). For
example the TAR pit (x:= y || y:=x) fails to produce a value
for x from thin air since this produces a cycle in ≤, as shown
on the left below:

R y 42

W x 42

Rx 42

W y 42

R y 1

W x 1

Rx 1

W y 1

This cycle can be broken by removing a dependency. For
example (x:= y || r:=x; y:= r + 1 − r) has the execution on

17

the right above. Note that (Rx 1) 6≤ (W y 1), so this does not
introduce a cycle.

Although it is not the primary focus of this paper, our model
may be an attractive model of relaxed memory. Many prior
models either permit thin-air executions that our model forbids
or forbid desirable executions that our model permits.

Pugh [37] developed a set of twenty causality test cases in
the process of revising the Java Memory Model (JMM) [29].
Using hand calculation, we have confirmed that our model
gives the desired result for all twenty cases, unrolling loops
as necessary. Our model also gives the desired results for all
of the examples in Batty et al. [5, §4] and all but one in
Ševčík [44, §5.3]: redundant-write-after-read-elimination fails
for any sensible non-coherent semantics. Our model agrees
with the JMM on the “surprising and controversial behaviors”
of Manson et al. [29, §8], and thus fails to validate thread
inlining.

18

	Introduction
	Related work
	Model
	Data models
	3-valued pomsets

	Semantics of programs
	Sequential memory accesses
	Concurrent memory accesses
	Control dependencies
	Control independencies

	Attacks on speculative execution
	Spectre
	Speculation barriers
	Transactions

	Attacks on compiler optimizations
	Relaxed memory orders
	Dead store elimination

	Experiments
	Attacker model
	Load-store reordering attack
	Dead store elimination attack

	Conclusions and future work
	Appendix
	Operations on sets of pomsets
	Blockers
	Release/acquire synchronization
	Relaxed memory

